23 research outputs found

    Magnetic Diffusion in Star Formation

    Full text link
    Magnetic diffusion plays a vital role in star formation. We trace its influence from interstellar cloud scales down to star-disk scales. On both scales, we find that magnetic diffusion can be significantly enhanced by the buildup of strong gradients in magnetic field structure. Large scale nonlinear flows can create compressed cloud layers within which ambipolar diffusion occurs rapidly. However, in the flux-freezing limit that may be applicable to photoionized molecular cloud envelopes, supersonic motions can persist for long times if driven by an externally generated magnetic field that corresponds to a subcritical mass-to-flux ratio. In the case of protostellar accretion, rapid magnetic diffusion (through Ohmic dissipation with additional support from ambipolar diffusion) near the protostar causes dramatic magnetic flux loss. By doing so, it also allows the formation of a centrifugal disk, thereby avoiding the magnetic braking catastrophe.Comment: 5 pages, 4 figures. Conference proceedings of IAU Symposium 270, Computational Star Formation (eds. Alves, Elmegreen, Girart, Trimble

    Averting the magnetic braking catastrophe on small scales: disk formation due to Ohmic dissipation

    Full text link
    We perform axisymmetric resistive MHD calculations that demonstrate that centrifugal disks can indeed form around Class 0 objects despite magnetic braking. We follow the evolution of a prestellar core all the way to near-stellar densities and stellar radii. Under flux-freezing, the core is braked and disk formation is inhibited, while Ohmic dissipation renders magnetic braking ineffective within the first core. In agreement with observations that do not show evidence for large disks around Class 0 objects, the resultant disk forms in close proximity to the second core and has a radius of only ≈10 R⊙\approx 10~R_{\odot} early on. Disk formation does not require enhanced resistivity. We speculate that the disks can grow to the sizes observed around Class II stars over time under the influence of both Ohmic dissipation and ambipolar diffusion, as well as internal angular momentum redistribution.Comment: 4 pages, 3 figures, accepted by A&A Letter

    Contact mechanics of and Reynolds flow through saddle points: On the coalescence of contact patches and the leakage rate through near-critical constrictions

    Full text link
    We study numerically local models for the mechanical contact between two solids with rough surfaces. When the solids softly touch either through adhesion or by a small normal load LL, contact only forms at isolated patches and fluids can pass through the interface. When the load surpasses a threshold value, LcL_c, adjacent patches coalesce at a critical constriction, i.e., near points where the interfacial separation between the undeformed surfaces forms a saddle point. This process is continuous without adhesion and the interfacial separation near percolation is fully defined by scaling factors and the sign of Lc−LL_c-L. The scaling factors lead to a Reynolds flow resistance which diverges as (Lc−L)β(L_c-L)^\beta with β=3.45\beta = 3.45. Contact merging and destruction near saddle points becomes discontinuous when either short-range adhesion or specific short-range repulsion are added to the hard-wall repulsion. These results imply that coalescence and break-up of contact patches can contribute to Coulomb friction and contact aging.Comment: 6 pages, 6 figures, submitted to Euro. Phys. Let

    Towards time-dependent, non-equilibrium charge-transfer force fields: Contact electrification and history-dependent dissociation limits

    Full text link
    Force fields uniquely assign interatomic forces for a given set of atomic coordinates. The underlying assumption is that electrons are in their quantum-mechanical ground state or in thermal equilibrium. However, there is an abundance of cases where this is unjustified because the system is only locally in equilibrium. In particular, the fractional charges of atoms, clusters, or solids tend to not only depend on atomic positions but also on how the system reached its state. For example, the charge of an isolated solid -- and thus the forces between atoms in that solid -- usually depends on the counterbody with which it has last formed contact. Similarly, the charge of an atom, resulting from the dissociation of a molecule, can differ for different solvents in which the dissociation took place. In this paper we demonstrate that such charge-transfer history effects can be accounted for by assigning discrete oxidation states to atoms. With our method, an atom can donate an integer charge to another, nearby atom to change its oxidation state as in a redox reaction. In addition to integer charges, atoms can exchange "partial charges" which are determined with the split charge equilibration method.Comment: 11 pages, 7 figure

    Systematic analysis of Persson's contact mechanics theory of randomly rough elastic surfaces

    Full text link
    We systematically check explicit and implicit assumptions of Persson's contact mechanics theory. It casts the evolution of the pressure distribution Pr(p){\rm Pr}(p) with increasing resolution of surface roughness as a diffusive process, in which resolution plays the role of time. The tested key assumptions of the theory are: (a) the diffusion coefficient is independent of pressure pp, (b) the diffusion process is drift-free at any value of pp, (c) the point p=0p=0 acts as an absorbing barrier, i.e., once a point falls out of contact, it never reenters again, (d) the Fourier component of the elastic energy is only populated if the appropriate wave vector is resolved, and (e) it no longer changes when even smaller wavelengths are resolved. Using high-resolution numerical simulations, we quantify deviations from these approximations and find quite significant discrepancies in some cases. For example, the drift becomes substantial for small values of pp, which typically represent points in real space close to a contact line. On the other hand, there is a significant flux of points reentering contact. These and other identified deviations cancel each other to a large degree, resulting in an overall excellent description for contact area, contact geometry, and gap distribution functions. Similar fortuitous error cancellations cannot be guaranteed under different circumstances, for instance when investigating rubber friction. The results of the simulations may provide guidelines for a systematic improvement of the theory.Comment: 27 pages, 16 figures, accepted for publication by Journal of Physics: Condensed Matte
    corecore